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1 Introduction 

 

This century has seen three major scientific revolutions – the theory of relativity, 

quantum theory and chaos theory. 

 

“ Relativity eliminated the Newtonian illusion of absolute space and time; 

quantum theory eliminated the Newtonian dream of a controllable 

measurement process; chaos eliminates the Laplacian fantasy of 

deterministic predicability.”  1 

 

Although chaos has only recently become a catch phrase in science, many of the 

world’s oldest cultures have notions of chaos richly embedded in their mythologies 

and cosmogoniesi.  Interesting parallels can be found between many of the concepts 

of these ancient cultures, some of which can even be seen to tie in with the 

discoveries of modern chaos theory. 

 

With the arising of modern scientific principles in Greece, the world went through a 

period in which chaos was all but forgotten, being considered an invalid concept.  The 

natural world was to be fundamentally ruled by orderly systems, although sometimes 

the order was too complex to be understood.  Building on this concept of order, many 

scientists envisaged the power to predict the future of the universe forever.  At the 

time, it was an absolutely mind-blowing concept. 

 

                                                           
i Cosmogony = theory of the origin of the universe. 
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The Greek perception of an ordered universe held firm for over two thousand years 

until developments in technology mid-way through this century.  Chaos theory arose 

out of a newfound facility to harness the power of computers for mathematical and 

physical analysis. 

 

Chaos theory uncovered what became known as ‘deterministic unpredictability’  – a 

chaotic situation arising from an equation or system that has no outside influences or 

hidden secrets.  It became apparent that incredible complexity could arise out of very 

simple equations.  In fact, order and chaos were found to closely linked, the one often 

arising out of the other.  As science has matured, it has realised how much it cannot 

predict. 

 

Chaos theory draws together a wide range of sciences, including ecology, economics, 

meteorology, geometry, mathematics, physics, electronics and astrophysics.  It finds 

common themes between previously unrelated scientific disciplines. 
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2 Chaos in Mythology 

 

Many of the world’s oldest cultures have references to chaos in their mythology and 

creation stories.  The Chinese, Egyptians, Mesopotamians, Babylonians, Indians and 

Greeks are amongst them.  Common to them all is the notion that order arises out of 

an infinite state of chaos to form the cosmos or ordered universe.  This process either 

occurs of its own accord or is assisted by a god or god-like figure. 

 

Cosmogonical chaos has many different names. Sometimes it is directly referred to as 

chaos itself, exemplified by the Egyptians and the Greeks. It is also referred to as a 

metaphor: Hun-tun in Chinese mythology, Asat for the Vedic Indians, and Tiãmat in 

Babylonian cosmogony. 

 

2.1 Chinese Mythology 

 

The Chinese have direct references to chaos in their stories of creation.  One 

mythological Chinese emperor (analogous to the gods of the Greeks and the Romans) 

had the name Hun-tun, meaning chaos. 

 

“ …for the Chinese as for other people, creation was the act of reducing 

chaos to order.”  2 

 

The writings of Chuang-tzuii relate the story of the end of chaos and the beginning of 

the world.  In this myth, the emperor god of the Northern Sea, Hu, and the emperor of 

                                                           
ii Chuang-tzu was a Taoist writer in the third century BC. 
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the Southern Sea, Shu, used to meet, on occasion, halfway between their respective 

confines in the territory of Hun-tun, the emperor god of the Centre.  Hun-tun, 

although being most welcoming, differed from the others in that he did not possess 

the seven orifices (that is, mouth, ears, nose, and eyes). 

 

Hu and Shu were most grateful for Hun-tun’s hospitality, so they resolved to bore the 

orifices required for sight, hearing, eating, and breathing into Hun-tun.  This they did, 

boring one hole a day.  On the seventh day, as the final orifice was completed, Hun-

tun died.  With the death of chaos, the world came into being. The Chinese word for 

lightning is shu-hu, which is a combination of the names of the North and South 

emperors, and hence, a stroke of lightning may also have been involved.iii 

 

Another Chinese text from the third century AD describes chaos as a hen’s egg.  This 

egg is depicted as the yin-yang symbol popular today (☯). 

 

“ The separation of chaos into an initial yin and yang is to be found as a 

fundamental concept in Chinese thought…”  3 

 

Phan-ku, who is usually depicted as a dwarf dressed in bearskin or leaves, hatched 

from this egg, and from it the heavens and the earth were created.  The heavy 

elements formed the earth, or yin, while its pure elements formed the sky, or yang.  

For eighteen thousand years the earth and the sky separated at a rate of ten feet a day.  

Phan-ku grew at the same rate also, his body filling the space between.  When Phan-

ku died his body formed the earth’s elements. 
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The concept of the world egg is not confined to China.  Similar themes can also 

be seen in classical Indian cosmogonies, in which a world egg opens to form the 

heavens from its upper part and the earth from its lower. 

 

Chinese mythology also has a story in which chaos re-emerges: the world of mirrors 

and the world of humans were not always separated.  Although being quite different in 

form, the mirror beings and human beings lived together in harmony.  One night, 

however, the mirror people invaded without warning.  Their might was great, and 

chaos supervened.  Human beings quickly realised that the mirror people were, in fact, 

chaos. 

 

Only with the strength of the Yellow Emperor god did human beings manage to defeat 

the mirror people.  In order to prevent any further uprising, the Yellow Emperor cast a 

spell that bound the mirror people to mimic the actions of men.  However, the 

Emperor’s spell was not strong enough to bind them to this task for eternity.  One day, 

the spell would diminish and chaos would once again show its face. 

 

2.2 Egyptian Mythology 

 

Egyptian cosmogony, as with that of the Chinese, refers directly to chaos, although it 

takes a different form.  For the Egyptians, chaos was an ocean, the predecessor of all 

else; boundless, it had existed for eternity.  Although chaos was often described by the 

Egyptians as unexplainable and formless, it was never perceived to be immaterial.  

                                                                                                                                                                      
iii One current theory that attempts to explain the origins of life on earth claims that life began from 
lightning striking the ocean, creating urea, which is a by-product of life, and glutamic acid, which is a 
protein precursor. 
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Creation was the act of giving ‘watery chaos’  definition and differentiation, not 

achieved by an act of a god, but by a force called the demiurge. 

 

“ Egyptians did not believe that the world had been created out of nothing: 

material of some kind had been there always.  They imagined the original 

creation as a shaping of that formless material into an ordered world… 

The world had not been shaped by a god who had existed for ever and ever 

– what had existed for ever and ever was chaos.  Often chaos is described 

in negative terms: it cannot be explained…Yet chaos was not imagined as 

immaterial: it was a boundless ocean, called Nun.”  4 

 

The Egyptians viewed their enemies as the forces of chaos.  If Egypt was conquered 

and ruled by an enemy king who chose not to worship the Egyptian gods and become 

Pharaoh, it was seen as a victory for chaos.  They saw themselves and their kings as 

fighting against the “agents of chaos,”  in all situations, in the name of the cosmos.  

Indeed: 

 

“ Every Near Eastern world-view showed an awareness not only of order 

in the world but of the instability of that order.”  5 

 

The Egyptian cosmogony of the Hermopolitan priests also refers to a cosmic egg that 

hatched upon the primeval mound.  From it was born the sun-god, who brought order 

to the world.  According to this tradition, chaos had four characteristics, represented 

by the gods and goddesses of primordial water, infinite space, darkness, and 
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invisibility.  Together, these gods were known as the Hermopolitan Ogdoad.  

According to the legend of Khmunu, the egg was laid by Thoth, the god of wisdom. 

 

2.3 Dragons in chaos myths 

 

Another link between Chinese and Egyptian chaos mythology is the use of dragons, 

although their views on their significance differ.  While the Egyptians saw the dragon 

Apophis as representing chaos, the Chinese saw dragons as embodying the principle of 

order (yang).6 

 

The myth of Ra, the sun god, taken from Egyptian Mortuary Texts, describes the battle 

between the God Ra and Apophis.  Ra was victorious, overcoming the forces of 

darkness and disorder, but the dragon is not mortally wounded. 

 

It is significant that Ra does not succeed in killing the dragon, only suppressing him.  

This harkens back to the Myth of the Yellow Emperor (see section 2.1), where chaos 

is only laid dormant and not eradicated. 

 

2.4 Vedic Indian Mythology 

 

Vedic Indian mythology also has a linkage to that of the Egyptians and the Chinese.  It 

involves the story of the warrior god Indra.  The section of the story that is of interest 

begins before the ordered world had come into being, during a period where the 

Adityas and the rakshashas are at war.  The Adityas are generally portrayed as being 
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human in form although possessing superhuman powers, while the rakshashas are 

demons, usually taking the form of serpents, dragons, or sometimes boars. 

 

The Adityas are descended from the goddess Aditi, whose name means freedom, and 

standing for freedom, they want the cosmic waters to be released.  The demons, whose 

names often mean restraint or bondage, contain the cosmic waters, which are guarded 

by Vritra, the arch-demon. 

 

The Adityas call upon the help of Indra; perhaps they even instigate his creation.  The 

youngest of the gods and eager to make a name for himself, Indra was born of the sky 

(his father) and the earth (his mother).  To prepare himself for battle, Indra took three 

draughts of the stimulant soma.  This caused him to grow so large as to fill the earth 

and sky.  His parents leapt apart in shock, never to be reunited. 

 

Indra fought Vritra armed with the thunderbolt, vajra, and after a furious battle, the 

arch-demon lay dead.  Through this victory, Indra became king of all the gods, and as 

the cosmic waters flowed from the belly of Vritraiv, as order flowed from chaos, he set 

about making the ordered world. 

 

“ Vritra is very much like the Egyptian Apep or Apophis.  Like him, he 

represents primordial chaos: dwelling in everlasting darkness, he contains 

the cosmic waters.  By attacking, piercing and slaying him, the warrior 

god – Indra…– sets those waters free.”  7 

 

                                                           
iv Note: accounts vary as to whether the cosmic water flowed from a cave guarded by rakshashas, or 
whether they flowed from Vritra’s belly. 
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Indra’s use of a thunderbolt in defeating Vritra harkens back to the Chinese story of 

Shu and Hu, where lightning is involved in the emergence of order.  Indra has another 

link with Chinese mythology, through the story of Phan-ku.  Both Indra and Phan-ku 

are born of the earth and sky, and grow to fill the space between. 

 

2.5 Mesopotamian &  Babylonian Mythology 

 

For the Mesopotamians, a culture dating back as far as 3,000 BC, the world began 

with a boundless ocean, akin to that mentioned in Egyptian mythology.  

 

“ …in the earliest Mesopotamian world-view, there was nothing but salt 

ocean, primordial, boundless.”  8 

 

From this developed the earth and the sky, although they were still joined to the ocean.  

A god, creating the present form of the world, separated them. 

 

“ It was his [An’s]  will that lifted existence out of chaos and established 

the world order.”  9 

 

An is the God of the Sky, and he is the father of all things.  However, he was not the 

first in existence.  Out of the boundless ocean of chaos was born the sky, the god of 

which set out to create the ordered world. 

 

The Babylonians had several gods representing different manifestations of chaos.  One 

of these was Tiãmat, a primordial chaos goddess of salt ocean. 
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“ She and other early gods embodied the various faces of chaos.  For 

example, there was a god symbolising the boundless stretches of 

primordial formlessness, and a god called ‘ the hidden,’  representing the 

intangibility and imperceptibility that lurks in chaotic confusion.”  10 

 

In this way, the Babylonians acknowledged a type of order within chaos.  By naming 

forms of disorder, a form of implicit order is already being conceived. 

 

2.6 Greek Mythology 

 

The Greek mythology, like that of the Egyptians and Chinese, has chaos embedded in 

its stories of creation, although the timing of its inception varies.  One source, 

Arogonautica Orphica 12, states that chronos, or time, was the first to exist.  Another, 

that of Plato, indicates that Uranus and Gaia were the primordial beings. 

  

The majority of sources, however, identify chaos as one of the earliest cosmogonical 

entities.  Hyginus states that chaos arose out of primordial mists.  According to the 

Hesiod, chaos was the first into existence, and from it came Nyx (night), Gaia (earth), 

Erebus (pure darkness of the underworld), Tartus 1 (the lowest abyss beneath the 

earth), and Eros (the god of love).  It is up to interpretation as to whether these entities 

are the offspring of chaos or whether they just came into being of their own accord.  In 

the cosmogony of Ovidius, first of all “ was what man called chaos: a rough 

unordered mass of things.”  11  God then gave the world order.   Aristophanes, a Greek 
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playwright who lived around 400 BC, also saw chaos as the first to exist, although not 

alone, since Nyx, Erebus, and Tartus 1 also accompanied chaos in the beginning.   

As with the Chinese, the Indians, and the Egyptians, Aristophanes’  account involves a 

cosmic egg.  Nyx laid an egg in Erebus, from which hatched Eros, who “caused all 

things to mingle.”   This reference to Eros and the egg probably implies the beginning 

of life. Love can also be viewed as reproduction, as suggested by the word ‘mingle’ , 

with the egg being a symbol of fertility and life. 

 

2.7 Water  in chaos myths 

 

There are a variety of cultures that have water as the initial cosmogonical entity.  As 

well as those already mentioned, these include the Maidu Indians of California, the 

people of the Marshall Islands, Russian Altaic, the Hurons (American Indians), and to 

a lesser extent the Yoruba (of Nigeria). 

 

The themes of chaos and that of the primordial, boundless ocean are recurrent 

throughout many cosmogonies. The Egyptians and the Mesopotamians provide a key 

linkage between the two, giving chaos the form of an ocean.  Clearly for both, chaos is 

a force that must be in some way controlled. 

 

Oceans would provide an accurate metaphor of chaos for many cultures attempting to 

describe that which the Egyptians viewed as unexplainable.  Oceans are vast, 

seemingly infinite.  Some cultures, notably the Vikings, believed that the ocean 

continued to the end of the world and disappeared over the edge.  It was an infinite 

source that continued beyond the horizon of human perception. 
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More modern research into fluid dynamics has discovered an infinity of a different 

kind.  One of the earliest researchers in this field was Leonardo Da Vinci (see section 

5.4.1).  He found that eddies break up into eddies of decreasing size, a form of infinite 

complexity, a recurring theme in today’s scientific view of chaos. 

 

Oceans are also turbulent and unpredictable, two aspects which are key to the modern 

understanding of chaos.  From the earliest research into the movement of water, it has 

been found to be turbulent when there is large flow.   The work of Leonardo da Vinci 

also represented this. In this way the ocean represented something of infinite size and 

infinite complexity. 

 

Oceans are also a prime example of that which is the same on varying scales and 

quantities. A wave breaking on a sandy riverbank takes the same form as a six-foot 

wave breaking at a top surf location.  This is akin to the self-similarity of fractals, 

where small sections show a likeness to the overall image. 

 

When endeavouring to relate chaos as an experience tangible to the everyday world, 

the ocean is likely, for many cultures, to have provided the most accurate metaphor. 
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3 The Forgetting of Chaos through scientific reductionism. 

 

One of the difficulties encountered when trying to comprehend infinity is that there 

are no reference points.  Imagine a boat on an ocean.  It is night and the sky is clouded 

over.  As far as can be seen there is nothing but water.  Without reference points, it is 

impossible to gain any understanding of where we are. Therefore, humans add 

reference points, or attempt to create order out of the ocean of chaos.  Through 

reductionism, science has taken this to the extreme, and in so doing, the mythological 

link humankind had with chaos has become nullified. 

 

“ The psychologist, anthropologist, and critic René Girard has observed 

that we humans have a great need to interpret the disorder in myths from 

the point of view of order.  ‘Even the word ‘dis-order’  suggests the 

precedence and pre-eminence of order,’  he says.  ‘We are always 

improving on mythology in the sense that we suppress its disorder more 

and more.’  ”  12 

 

The same holds true in science, and with the birth of the modern scientific method in 

Greece, chaos began to be forgotten.   

 

3.1 The Bir th of Modern Science in Greece. 

 

Despite strong ideas of chaos in their mythology, the Greeks were among the first to 

attempt to understand their surroundings through reductionism.  In other words, they 
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broke things down into their smallest possible components, tried to understand them 

individually, and then added them up again in order to comprehend the whole. 

 

“ Rationalism, for whatever its value, appears to have emerged from 

mythology with the Greeks… There was a feeling that the natural laws, 

when found, would be comprehensible.  This Greek optimism has never 

entirely left the human race.”  13 

 

Many of the Greek areas of study reflect their desire to understand the world by its 

smallest and most simple parts.  For example, there was much discussion regarding 

atoms and indivisibles, a concept that continues to be relevant today. 

 

“ …that most influential concept of early Greek science, the atom.  The 

notion of atoms was offered as the bedrock of understanding, and its 

properties seemed to symbolise the supposedly ultimate form of reasonable 

questions that could be raised about the universe.”  14 

 

Through reductionism, the Greeks were also the first to encounter some of the 

problems it raised.  On the mathematical frontier, several of these were later solved by 

calculus. This process of reductionism began with the Greek philosophers, Thales, 

Anaximander, and Anaxagoras who took the mythological idea of chaos as a creative 

force and applied it to science. 
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“ [They] … proposed that a specific substance or energy – water or air – 

had been in chaotic flux and from that substance the various forms in the 

universe had congealed.”  15 

 

Thales, born in Miletus in 624 BC is credited by later Greeks as being the founder of 

Greek science, mathematics, and philosophy.  Thales’  mother is believed to have been 

a Phoenician and this may be one of the reasons why he received an Eastern 

education.  Although many details about his life are sketchy, it is certain that he spent 

time in Egypt and most probably Babylonia and would have had a grounding in 

creation myths from these and other lands. 

 

“ It may be that what seemed to the Greeks a multiplicity of achievement 

was simply the lore of the more ancient peoples.”  16 

 

Thales took the knowledge of the East and brought it to the West.  However, in doing 

so, he made the important advance of turning such knowledge into abstract studies.  

He was the first to attempt to prove mathematical statements using a logical series of 

arguments.  Importantly, he was also the first to ask the question ‘of what is the 

Universe made?’  from a purely scientific perspective without relying on mythological 

ideas. 

 

In this way, Thales began changing previous notions of chaos and creation into more 

rational scientific ideas.  He proposed water as the fundamental element of the 

universe, still showing parallels to the mythological idea of the universe being created 

from a primordial and boundless ocean. 
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An example of science taking over mythology can be seen in a discovery of 

Pythagoras regarding the morning star (then known as Phosphorus) and the evening 

star, known as Hesperus.  He proved that they were, in fact, the same star, and 

consequently it was renamed Aphrodite (and subsequently Venus by the Romans). 

 

In the Pythagorean approach, we can see the beginnings of a reductionist view of the 

world.  They viewed the world through numbers and geometry. 

 

“ In their world view lines were derived from points or unit numbers, from 

lines surfaces, from surfaces simple bodies, from these the elements and 

the whole world.”  17 

 

“ They also held truth, intelligibility, and certitude to be cognate to 

numbers, which they contrasted with the erroneous world of the undefined, 

uncounted, senseless, and irrational.”  18 

 

Aristotle moved further away from mythological ideas of chaos and order, proposing 

that order was pervasive. That which appears chaotic merely has a high complexity of 

order, too complex to be understood at present. 

 

Nevertheless, some Greek philosophers proposed that eventually, the universe would 

revert to a state of disorder from which a new universe would arise. 
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3. 2 From the Renaissance to the Present: Reductionism to Chaos. 

 

Scientists continued the Greek method of reductionism for centuries.  If a system 

appeared chaotic and unpredictable, science attempted to reduce it with the belief that, 

at a fundamental level, the system was ordered, linear, and predictable.  Driven by this 

idea, scientists developed theories that became minimalistic. Since the time of the 

Greeks, science had been working towards a complete understanding of the universe.  

Later, prominent scientists and philosophers like Galileo, Descartes, and Newton 

made this seem astonishingly close to being reality. 

 

“ Traditionally, scientists have looked for the simplest view of the world 

around us.” 19 

 

The mathematician, astronomer, and physicist, Galileo (1564 – 1642), studied 

pendulum motion with this objective in mind.  He discovered that the time it takes for 

a pendulum to complete a cycle is always the same, regardless of the size of the 

swing.  That is, the speed and the size of the swing are always proportionately 

identical.  After producing this hypothesis, he tested it by asking his friends to count 

the swing over the course of several hours. Although this is not the soundest method 

of confirming a hypothesis, the theory is an elegant one, and became widely accepted. 

 

Galileo is also famed for his observations on the then unexplained force of gravity. In 

his experiments, he found that weight does not effect the speed with which an object 

falls to the ground.  Throughout his work, he was simplifying the laws that govern the 

earth. 
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During the seventeenth century, Newton developed his theory of gravity and, along 

with Leibniz, calculus.  Through understanding these new, all encompassing laws of 

physics, it seemed that it would not be long before the entire workings of the world 

could be explained and calculated.  During the Napoleonic era, the French physicist 

Pierre Laplace, excited by this possibility, envisaged a law that could explain every 

physical phenomenon in the universe.  With approximate knowledge of the present, 

he stated, it would be possible to predict an equally approximate future. 

  

Indeed, by 1980 it seemed that physics had come so far that the end of 

unpredictability was in sight.  The cosmologist, Stephen Hawking, occupant of 

Newton’s chair at Cambridge University, spoke for most of physics when he said 

during a lecture entitled ‘ Is the End in Sight for Theoretical Physics?’ : 

 

“ We already know the physical laws that govern everything we experience 

in everyday life… It is a tribute to how far we have come in theoretical 

physics that it now takes enormous machines and a great deal of money to 

perform an experiment whose results we cannot predict.”  20 

 

Despite Hawking’s confidence in the power of modern physics to predict the future, 

many experiments considered simplistic by most physicists can, in fact, display 

unpredictable behaviour, as in the example of pendulums. 

 

“ Students for generations have regarded pendulums as classical examples 

of simple, regular motion.  In fact, pendulums still hold great surprises in 

store for us.”  21 
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Thanks, primarily, to the work of John Miles of the University of California, 

pendulums are now seen as a good example of ‘deterministic chaos’ .  David Tritton, 

of the University of Newcastle upon Tyne, explains a relatively simple experiment 

that exemplifies this.  It involves a ball suspended from a piece of string.  The string is 

attached to a horizontally oscillating crankshaft.  The crankshaft drives the motion of 

the pendulum. 

 

When the crankshaft is driving the pendulum slightly higher than its natural (free-

swinging) speed, the motion of the pendulum increases accordingly, before 

developing a secondary movement that runs perpendicular to the drive.  This causes 

the pendulum to move in a circular path.  Once the pendulum has settled into this 

path, it will continue as long as the oscillation of the crankshaft is maintained.  

Although this motion is predictable and non-chaotic, it does contain an unpredictable 

element: the initial direction of the pendulum (clockwise or anti-clockwise) is a 

random event.  Once the direction becomes established, however, the course of the 

pendulum is easily predicted. 

 

If the crankshaft is driving the pendulum slightly lower than its natural speed, there 

are many possible outcomes to the pendulum’s movement, all of them elliptical with 

successive orbits never being identical.  Over longer periods of time, significant 

change can be noticed.  Not only is the motion aperiodic, it also frequently changes 

between clockwise and anti-clockwise.  Experimental and theoretical work by Miles 

suggests that, indeed, there is no pattern to the movement.  It is entirely chaotic. 
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4 The Or iginators of Chaos Theory 

 

Scientists have always looked for theories and proofs that are pleasing and satisfying.  

It is a natural desire that stems from human aspirations to perfection. For example, 

according to calculus, adding 1+1/2+1/4+1/8…∞ = 2.  This seems intuitively correct, 

and, as a consequence, science often sets out to prove such theories.  In so doing, 

small errors are often encountered but ignored, being put down to inaccuracies in 

scientific method or measurement.  For many centuries, mainstream science attempted 

to carry out experiments that excluded interferences such as friction.  Friction and 

other non-linearities (see appendix 3) were considered a form of imperfection.  

Friction, however, is to be found everywhere in the world and known universe.  The 

orbit of the moon is affected by friction created by the oceans, and simple everyday 

actions such as walking would not be possible without it.  Eventually, science came to 

a point where non-linearity could not be ignored. 

 

Logic tells us that adding up the individual parts should give us the whole.  But what 

we also know from experience is that there are critical points where a small 

movement has a disproportionately large effect.  Earthquakes offer a prime example.  

The slow but steady displacement of the earth’s tectonic plates has been creating a 

tension between two surfaces.  For many years nothing happens, friction prevents any 

offset movement between the surfaces.  Then a critical point is reached.  One plate 

moves an additional fraction of a millimetre and New Zealand experiences a severe 

earthquake that destroys hundreds of building and kills ten people (and fifty sheep!).  

Looking on a microscopic scale, it could be said that the tectonic plate moving a 

fraction of a millimetre caused the earthquake.  Although this is true, it does not make 
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sense without also considering the years of prior displacement.  Chaos theory helps to 

explain this. 

 

Unlike other scientific discoveries, where developments are individual achievements, 

chaos theory was discovered and explored by many scientists from varying 

backgrounds.  Some of the earliest, like Poincaré, Julia, and Fatou, did not have 

available to them the technology to make their findings renowned, and receded into 

the background.  Since the advent of the computer, however, the calculating power 

has been available to expose chaos with broad application. 

 

4.1 Henr i Poincaré 

 

As far back as the late nineteenth century, a physicist, mathematician and philosopher 

from France called Henri Poincaré saw the possibilities of deterministic chaos 

existing inside closed Newtonian systems.v  A pendulum swinging in a vacuum, not 

impacted by friction in any way, is seen as a closed system, that is, it has no outside 

influences.  In Poincaré’s era, any disorder in a system was seen as an outside 

influence that would disappear if it were possible to emulate a closed system 

environment.  Poincaré’s work was one of the earliest contradictions to these views. 

 

Newton’s laws of planetary motion are capable of predicting the orbits of two planets 

in a closed system environment, for example in a universe consisting only of the earth 

and the moon.  Matters become slightly more problematical, however, if a third body 

                                                           
v A Newtonian system is a system that uses Newton’s laws.  These systems came before chaos and 
quantum theory and were thought to be predictable. 
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is added to the equation, for example, the sun.  In fact, according to science writer, 

John Briggs and physicist, F. David Peat, Newton’s equations become unsolvable. 

 

In order to solve equations involving orbits of more than two bodies, a series of ever-

smaller approximations are used to arrive at the answer.  Poincaré contemplated what 

would happen if these approximations had an impact over a long period of time.  

Looking at the problem mathematically, it was non-linear, but nonetheless, it 

appeared that the introduction of the third body had little effect, for the most part.  He 

did, however, discover that certain orbits caused a planet to wobble and then fly off 

course, even out of the solar system.  This could have huge implications for our solar 

system, if over time, a series of planets happened to end up in one of Poincaré’s 

chaotic orbits. Planets could suddenly start flying out of the solar system.  Poincaré 

introduced one of the hallmarks of chaotic behaviour in an essay called “Science and 

Method” in 1903: ‘sensitive dependence on initial conditions.’22 

 

At the time, however, Poincaré’s discovery was largely ignored as it was 

overshadowed by many of the other great scientific discoveries of the early twentieth 

century.  Max Planck’s work on quantum theory was challenging Newton’s theories 

and Einstein was presenting his theory of relativity.  Poincaré himself left his 

research, feeling overawed by his “bizarre”  discovery. 

 

Later, in 1954, three Russian scientists, A. N. Kolmogorov, Vladimir Arnold and J. 

Moser, collectively known as KAM, provided some of the answers to Poincaré’s 

problem.  Firstly, they noted that the condition Poincaré described could not occur if 

the third body had a gravitational pull less than that of a fly on the other side of the 
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world.  Secondly, they noted that it could only occur if the cycle of the planet’s orbits 

fell in a ratio, that is, they repeated over a period of time.  This means that the effect 

the third planet would have is one of positive feedback (see appendix 1), and, 

therefore, the change is amplified over time.  If this is not the case, and the planet’s 

orbits are quasi-periodic, then it demonstrates a form of negative feedback and is self-

corrective. 

 

What this positive feedback system shows is ‘deterministic chaos’ .  This contradicted 

and nullified the idea that chaotic behaviour could not occur in a closed system. 

 

Poincaré and KAM’s theories are also backed up by evidence in our own solar 

system.  Holes in the asteroid belt have been found where the latter coincides 

periodically with the orbit of Jupiter.  Asteroids once in these zones have been sent 

flying randomly off into space.  Some of the asteroids that have collided with the 

earth could be accounted for by such a theory. 

 

According to Jack Wisdom of the Massachusetts Institute of Technology, many of the 

moons in our solar system must have undergone some periods of chaotic behaviour in 

the past but have since developed quasi-periodic orbits.  One of Saturn’s moons, 

Hyperion, appears to be undergoing one such period at the moment.  Gaps in Saturn’s 

rings are also possible results of KAM theory, although research in this topic is still 

under way. 
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4.2 Gaston Julia and Pierre Fatou 

 

Throughout history, developments in geometry have run parallel to advances in other 

areas of science.  The architecture and surveying of the Egyptians was only made 

possible by advances in geometry.  The Greeks made many geometrical developments 

and applied them to practical science.  For example, they were able to determine the 

distance of a boat from the shore using Pythagoras’  theorem.  They were also able to 

light fires using parabolic mirrors by focusing the sun’s energy.  In fact, according to 

Benoit B. Mandelbrot (the famed ‘ inventor’  of fractalsvi), Johannes Kepler’s 17th 

Century discovery that orbits of planets could be described as ellipses was a catalyst 

for Newton’s work on gravity.  More recently, fractals have arisen as one of the 

leading geometrical fields.  Crucial to their inception were Poincaré and the duo of 

Gaston Julia (1893 – 1978) and Pierre Fatou (1878 – 1929).  They studied the 

dynamics of complex number maps around 1910, developing Julia Sets and laying the 

groundwork for modern fractal imagery. 

 

Julia was an Algerian born mathematician.  He had the misfortune of loosing his nose 

in World War I and carried out much of his mathematical research in hospital.  Julia 

worked on iterative functions whereby the fn(z) stays bounded as n tends to infinity 

(where z is a complex number). Much less is known about the life of Fatou, although 

his work involved planetary motion.  As with Julia, he had particular interest in 

rational functions with complex variables.  Without the iterative power of computers, 

however, their research was limited and after a short period, the study was all but 

forgotten until the 1970s when Mandelbrot rekindled interest in the subject. 

                                                           
vi A fractal is an image possessing self-similarity (that is, the image repeats on different scales). 
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4.3 Benoit Mandelbrot 

 

Benoit Mandelbrot was a Polish-born mathematician who, from the outset, had 

adopted an unconventional view.  His educational background was also 

unconventional in that he claimed never to have learnt the alphabet or multiplication 

tables.  He had a difficult childhood, fleeing from Nazi prosecution, due to his Jewish 

background. 

 

In 1936, the family moved to Paris, where Benoit’s uncle, Szolem Mandelbrot, lived.  

Szolem was a mathematician who was a founding member of Bourbaki.  Bourbaki 

was a mathematical ‘cult’ , designed to rebuild mathematics after World War I.  

Bourbaki’s attitude was directly opposed to that of mathematicians like Poincaré who 

said, “ I know it must be right, so why should I prove it?” 23  Bourbaki moved away 

from maths as a means of explaining physical phenomena, believing that maths was a 

science of its own and that it should not be judged by its application to other sciences.  

Indeed, 

 

“ A mathematician could take pride in saying that his work explained 

nothing in the world or in science…With self containment came clarity.”  24 

 

Bourbaki also rejected the use of pictures and geometry, believing them to be 

unreliable.  Almost ironically, one of Mandelbrot’s strengths was his ability to view 

things in pictorial form, allowing him to hide his lack of formal mathematical training 

at the prestigious École Polytechnique in France.  At the time, however, this left him 
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in the scientific wilderness.  He ended up working at the Thomas J. Watson Research 

Center at IBM. 

 

One of Mandelbrot’s ideas that gained him most notoriety was the paper, “How long 

is the coast of Great Britain?”  – a seemingly trivial question that yields the surprising 

answer – ‘ infinite’ .  When measuring the length of a coastline, the results depend on 

the detail of the measuring.  If measuring a coastline from a satellite photo, one might 

choose to pick a point every hundred metres around the coastline and measure 

between these points.  However, if greater accuracy is desired, a point every fifty 

metres may be measured.  Although the coastline is still the same, the distance 

measured now proves to be greater, as more of the bays have been taken into account.  

The more detail in which we look at the coastline, the longer the coast becomes.  

Hence, at an infinite level of detail, the coast is infinitely long. 

 

A simple geometric representation of this idea can be seen in the Koch Curve, in 

Mandelbrot’s words, “ a rough but vigorous model of a coastline.”  25  The Koch curve 

is made up of equilateral triangles.  An equilateral triangle one third of the size of its 

originator stems off each triangle.  Therefore, the length of the perimeter of the Koch 

curve is 3 *  4/3 *  4/3 *  4/3…and ad infinitum. 

 

Looking at the Koch curve from a distance, it appears that it is merely a twelve-sided 

star, or two superimposed equilateral triangles.  Each ‘edge’  is as follows: moving 

closer in, the overall shape is maintained but the detail (and length of ‘coastline’ ) 

increases.  If a section of it is magnified sufficiently, it appears identical to the 

original image. 



 27 

This idea of self-similarity on differing scales is an idea central to fractals (see section 

5.2.1). 

 

4.4 Edward Lorenz 

 

Ever since the early days of modern computers, meteorologists have seen them as an 

extremely useful tool.  One such meteorologist was Edward Lorenz.  He was born in 

America in 1917 and worked at the Massachusetts Institute of Technology.  He had 

set up a computer (which he named ‘Royal McBee’) in his office that could simulate 

hypothetical weather for 12:00 am each day.  It was a very simple model that worked 

on twelve variables, such as air pressure and wind speed.  Each minute, a day would 

pass and the computer would produce a print-out telling Lorenz the weather.  Despite 

its simplicity, it was a surprisingly realistic simulation, showing various patterns, 

although with a certain irregularity. 

 

In 1961, Lorenz made the accidental discovery that small disturbances in initial 

conditions could result in unrecognisable results (see section 5.3).  Through his 

chance finding, he was one of the first to stumble across deterministic chaos and fully 

realise its ramifications. 

 

He termed this ‘ the butterfly effect’ ; the small disturbance caused by a butterfly 

flapping its wings could be enough to create a storm on the other side of the world a 

few days later. 
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4.5 Robert May 

 

Robert May was born in Sydney, Australia, and started his career as a physicist, 

before studying applied mathematics at Harvard.  Following this, he developed an 

interest in biology at Princeton University in New Jersey.  Because of his 

mathematical background, he brought a new approach to the study of population 

modelling, resulting in his investigation of bifurcations (see section 5.1.1).  Using 

mathematics to model populations, May examined an equation as a whole, rather than 

looking at individual values.  Previously, scientists had been trying to comprehend 

individual values in an attempt to find patterns and predictability.  May was moving 

away from reductionism towards a holistic approach. 
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5 Fields of Application 

 

“ The theory of chaos touches all disciplines.” 26 

 

Chaos theory can be applied to many diverse areas of science.  These include fields 

such as biology, physics, chemistry, mathematics, electronics, and economics.  In all 

areas it brought a new approach and often threatened old methods, and some cases 

encountered resistance from scientists with a more conservative outlook.  Now that 

chaos has gained wider acceptance, however, it provides new insights and stimulates 

discussion between seemingly unrelated disciplines. 

 

5. 1 Biology 

 

Biology exemplifies chaotic process in many areas, from plant-like fractals to 

mathematical models of populations and predator-prey systems.  Genetics, aspects of 

human biology, and many rhythmic behaviours of nature are also explainable through 

chaos theory. 

 

5.1.1 Population Modelling 

 

For ecologists and biologists, population studies frequently play an important role.  

Examining a population mathematically can be a useful tool, allowing current 

populations to be understood and future populations to be predicted.  Mathematically, 

populations can be viewed as feedback loops; this year’s population impacts directly 

on that of the following year.  Finding an equation that matches a real life scenario is 
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incredibly difficult – there are so many factors to take into consideration.  A species 

can be affected by many predators, various food and habitat requirements (each of 

which depend on equally complex requirements), etc.  It is not enough to know that 

birds eat moths, it is also necessary to know at what rate this occurs. 

 

Since nature is highly complex, ecologists looked to simplified mathematical models 

as approximations.   Firstly, these approximations measure population growth in 

regular intervals, not on a continual basic.  The simplest of these imagines a world 

with infinite resources (food, habitat, etc) and no predators.  The population increases 

like a compound interest sum, growing exponentially.  Such an equation is as follows: 

xnext = λx, where λ (lambda) is the rate of growth and x represents the population.  If x 

takes on a value of 0.4 lambda takes on a value of 2 then: 

 

X0 = 0.4 

X1 = 0.8 

X2 = 1.6 

X3 = 3.2 

X4 = 6.4… 

 

This equation, the Malthusian model, is a poor demonstration of the natural world, 

and its shortcomings are pretty obvious.  The world is not a place of infinite resource, 

so the next task is to add a limit factor to the equation, representing the maximum size 

of the population.  The following equation is still highly simplistic, but does solve the 

aforementioned problem: xnext = λx(1-x), where x < 1 and λ is the rate of growth.  In 

this equation, the population is scaled between 0 and 1.  (1-x) adds a limit to the 
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population because as x rises, (1-x) falls accordingly.  In this model, if x takes on a 

value of 0.4 and lambda a value of 2 then: 

 

X0 = 0.4 

X1 = 0.48 

X2 = 0.4992 

X3 = 0.4999987 

X4 = 0.5 

X5 = 0.5 

 

The population has risen steeply to a state of equilibrium and settled to a constant 

value of 0.5. As the value of λ rises, the population behaves in similar fashion, but 

reaches a higher equilibrium.  Here, λ takes the value 2.3: 

 

X0 = 0.4 

X1 = 0.552 

X2 = 0.5687808 

X3 = 0.5641192 

X4 = 0.5655441 

X5 = 0.5651191 

X6 = 0.5652468 

X7 = 0.5652086 

 

X8 = 0.5652201 

X9 = 0.5652166 

X10 = 0.5652176 

X11 = 0.5652173 

X12 = 0.5652174 

X13 = 0.5652174 

X14 = 0.5652174 

X15 = 0.5652174 

 

Moreover, as lambda increases still further, the population no longer settles to a single 

number but begins to repeat in a series of two.  Lambda = 1 + 51/2 (= 3.236067977…): 
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X0 = 0.4 

X1 = 0.7766563 

X2 = 0.5613325 

X3 = 0.7968440 

X4 = 0.5238665 

X5 = 0.8071737 

X6 = 0.5036755 

X7 = 0.8089733 

 

X8 = 0.5000874 

X9 = 0.809017 

X10 = 0.5 

X11 = 0.809017 

X12 = 0.5 

X13 = 0.809017 

X14 = 0.5 

X15 = 0.809017 

Increasing lambda further, the pattern becomes more complicated. Rather than a 

series of two, the x repeats in a series of four, then eight and so forth.  This process of 

periodic doubling is known as a bifurcation.  Bifurcations were first studied by Robert 

May (see section 4.5). Before May, people had been looking at each iterative equation 

separately and looking for patterns and predicability within it.  Robert May took a 

different approach.  He took the last repeating values of a particular lambda and 

graphed these points next to that of the previous lambda.  This enabled him to view 

the entire equation, not just a small part of it. 
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This image shows May’s approach when x=.4, lambda increments = .0001, iterations 

(see appendix 2) = 5000, and plotted points = 50: 

 

 

The above diagram shows this process of bifurcation.  When the whole equation xnext 

= λx(1-x) is displayed, the areas of order and chaos can be clearly seen.  Denser 

regions can be seen running through the chaotic regions, these show areas with a high 

population probability.  Although the population could end up anywhere within the 

white area, the denser areas represent a mild form of order. 

 

Regions of chaos in the diagram are periodically interrupted by regions of order, 

where the disordered mass suddenly reduces into an odd number of single lines, 

before dissipating into chaos once more.  If these ordered areas are shown in greater 

detail, they are exact replicas of the first bifurcation.  This shows a form of order that 

can be seen on different scales rather than on the same scale.  The order cannot be 
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seen on scale of time, but it can be seen on a scale of magnification.  Although this 

idea only became popular with the advent of fractals, it is not entirely new.  Similar 

ideas have been explored by mathematicians like Helge von Koch, who investigated 

the Koch curve, showing an infinite distance in a finite line.  The Sierpinski triangle is 

another similar example (see section 5.2.1). 

 

When lambda approaches greater values still, all traces of order vanish and chaos 

ensues.  Here lambda = 4. 

 

X0 = 0.4 

X1 = 0.96 

X2 = 0.1536001 

X3 = 0.5200284 

X4 = 0.9983954 

X5 = 0.00640793 

X6 = 0.02546474 

X7 = 0.09927552 

X8 = 0.3576796 

X9 = 0.9189796 

X10 = 0.2978244 

 

This process shows the hallmarks of a chaotic system.  With low input, the system is 

orderly, with increased input, the system becomes complex and eventually chaotic. 

 

5.1.2 Chaos Theory as a Modelling Tool 

 

As well as being used in population modelling, chaos theory has also been used to 

describe other areas of biology, from the fractal-like structure of blood vessels and 

capillaries to many rhythmic systems found within nature.  Research under way at the 

University of Newcastle in Australia suggests that linked oscillators, themselves 

exponents of chaotic principles, provide excellent models for such behaviour.  From 
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insects like glow worms and cicadas to rhythmically contracting tissues in the gastro-

intestinal system, living things display a broad range of rhythmic activity, for which 

oscillators working on chaotic principles may provide the best explanation.  Longer 

rhythmic behaviour can be seen in the plant kingdom, with the opening and closing of 

leaves and flowers.  On a longer scale still are seasonal variation, ovulation, and 

predator-prey population growth.  Nature provides much rhythmic synchronicity. 

 

However, disrupting these cycles can lead to chaotic behaviour before order re-

emerges, as Mohammad S. Imtiaz, of the University of Newcastle, explains:  “One 

example is the membrane voltage recording from a freshly dissected stomach tissue.  

Initially these tissues produce a very non-coherent output. But as time goes on most of 

them slowly develop a regular rhythmic pattern. A possible explanation is that the 

cells become de-coupled in a tissue that has been dissected, a kind of mechanical 

trauma.  Slowly as the tissue starts recovering, the cells start to communicate with 

each other and a rhythmic activity emerges.  We are still working on this and it is still 

a mystery to a large extent.”  

 

He goes on to give another example, involving insulin-secreting cells.  When a few 

insulin-secreting cells are isolated they do not produce clean, rhythmic behaviour. 

However, as soon as a number of them are grouped together, a clean synchronised 

activity emerges. 

 

Although the processes involved in this transition are still largely unclear, it appears 

that chaos of this form is a transitory behaviour. 
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5.1.3 Genetics 

One of the puzzles of genetics is how a seed can contain all the information needed 

for the growth of a huge tree.  However, research in fractals has shown that images of 

infinite complexity can be created using random process combined with a few very 

simple rules.  The Sierpinski triangle (see section 5.2.1) is a good example.  Similar 

rules can be used to generate more natural formations, and, as discovered by 

mathematician Michael Barnsley, of Georgia Institute of Technology, it is possible to 

find rules for objects in the natural world.  Based on the principle that nature 

possesses self-similarity, Barnsley was able to create a rule that reproduced an exact 

replica of a black spleenwort fern that “ no biologist would have any trouble 

identifying.” 27  Although the method, known as the ‘collage theorem,’  is complicated, 

simple rules can be found for any of the many natural shapes that possess self-

similarity. 

Admittedly, evidence is inconclusive, but Barnsley has, at least, made plausible the 

idea that plants store genetic information in a similar way. 

 

5. 2 Computer  Imagery 

 

The geometry of chaos theory requires computers, for the most part, to generate the 

highly complex images involved.  Surprisingly, these images are generated using 

relatively simply iterative complex number equations. 

 

Computer imagery has played a large part in chaos theory’s appeal with the wider 

public, the colourful fractal images striking a cord with the layman’s artistic sense. 
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5.2.1 Fractals 

 

Julia Sets, some of the earliest fractals to be explored, were first experimented with 

and discovered by the duo of Gaston Julia and Pierre Fatou (see section 4.2).  Julia 

Sets are maps on a complex number plane.  A complex number z contains two parts, a 

real part and an imaginary part.  That is, z = x + iy, where x and y are real numbers 

and i is the imaginary part, -11/2. When working with complex numbers, the real and 

imaginary parts are considered separately, as in normal algebra. 

 

z2 = (x+iy)(x+iy) 

    = x2 + 2iyx + i2y2 

    = x2 + 2iyx – y2 

 

Julia Sets work with iterative equations, for example F(z) = z2.  Z0 = x0 + iy0 with |z| 

<1.  Iterating this equation moves it closer to zero (see appendix).  Thus, as long as 

0<|z0|<1 then F(z) tends towards zero and consequently can be considered stable.  If 

|z0| >1 then it follows that F(z) tends towards infinity and is also stable.  This being 

the case, if z0 <> 1 then it is stable. 

 

Julia Sets (z = z2 + c) are defined by the constant c and consist of all points that do not 

tend to infinity or 0. 

 

Julia Sets posses very similar properties to simple fractals such as the Koch curve, 

showing infinite complexity and self-similarity on differing scales. 
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Through experimentation with my own models of Julia Sets, I have found that altering 

the real and imaginary parts of z have differing impacts on the form of the image, as 

described below. 

 

 

 

As soon as z is increased above 0 by even the smallest 

margin in either the real or imaginary part, the 

resulting image is of a near perfect circle.  Hence, it is 

the starting image for the Julia Sets sequences 

displayed on the following pages.  They are achieved 

by plotting a series of Julia Sets, increasing (or 

decreasing) either the x or the y value by a constant 

margin each time.  For convenience, I refer to these as 

‘sequential Julia Sets’  from here on.
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These images show the y value, or the imaginary part of the complex number, being 

increased (clockwise from top left) as follows: 0.25, 0.5, 0.75, 1.  Decreasing the y 

value (ie –0.25, -0.5 etc) simply mirrors each image. 
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These images show the x value, or the real part of the complex number, being 

increased (clockwise from top left) as follows: 0.25, 0.5, 0.75, 1.  Unlike with the y 

value, decreasing the x value results in a new set of images, shown below. 
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These images show the x value being decreased (clockwise from top left) as follows: 

-0.25, -0.5, -0.75, -1. 



 42 

 

 

This image shows Julia Sets respective to their place in the complex number plane.  

The circular Julia Set in the centre shows x = 0.00001, y = 0.  Extending out from it 

are Julia Sets at intervals of 0.5.  Hence, the Set in the bottom left had corner shows  

x = -1,y = -1.  It clearly shows the transformation of sequential Julia Sets and the 

effects of the real and imaginary parts on the form of the image.  The sets at 45 

degrees to the x, y axis can be seen as a combination of their counterparts on the axis.  

For example, the set at 0.5, 0.5 is a combination of the sets at 0, 0.5 and 0.5, 0. 
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The above image shows 3-dimensional plotting of a sequential Julia Set.  Each set is 

plotted on top of the previous, and hence, the method is able to show an entire 

sequential Julia Set simultaneously.  My inspiration for this technique was drawn 

from Robert May (see section 4.5), who shed new light on bifurcations using a similar 

procedure.  This set starts at 0,0 with the y value being increased by 0.001 for each of 

the 50,000 iterations. 
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Fractals can be used to create stunning visual landscapes with startling realism.  

Mandelbrot called it the geometry of nature for no insignificant reason.  When 

looking at the world, Mandelbrot realised that much of the world around us cannot be 

explained by the traditional Euclidean geometry of spheres and cubes.  As he said,  

 

“ Clouds are not spheres, mountains are not cones, coastlines are not 

circles and bark is not smooth, nor does lightning travel in a straight 

line.”  28 

 

Fractals, unlike Euclidean geometry, are able to mimic the “ real”  structures of the 

earth.  For example, the earth, from a great distance, looks like a perfect sphere.  As 

we get closer, the mountain ranges and other irregularities of the land become evident.  

From a distance, these mountains appear smooth.  Looking in more detail, it is clear 

that the mountain itself has smaller irregularities, as if the mountain is composed of a 

series of miniature mountains.  There are several geometrical examples of this, one of 

the most interesting is the Sierpinski triangle. 
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Each successively small white triangle is an exact replica of the overall triangle.  

Magnified sufficiently, any triangle will look identical to the original.  Therefore, the 

triangle is infinitely complex, within infinite black space (black triangles) within the 

boundary of the white triangle.  This prime example of complexity and infinity within 

a finite space is highly ordered but it is randomly generated using a few simple rules.  

The programme that created the above image places three points on the screen, one in 

each of the bottom corners (1 and 2) and one at the top in the centre (3).  Then, the 

programme puts a random point (P1) on the screen and randomly selects between one 

of the three original points.  If 2 is selected, point P2 is placed half way between P1 

and 2.  This process continues ad infinitum and the image appears with increasing 

detail. 

 

The self-similarity of fractals has also been noted by scientists in areas seemingly 

unrelated to fractal geometry, giving another good indication of their relevance to 

describing the natural word.  Respected mining geologist Guy Lewington of Eagle 

Mining explains how in his days as a field geologist, he observed fractals of a kind in 

rock formations and riverbeds.  Looking at a satellite photograph of a creek bed, he 

noticed mushroom-shaped rock formations about 10 kilometres in size.  He then went 

into the creek bed and sighted an outcrop of the same shape.  Taking a sample of rock 

from the area, he looked at it in thin section under a microscope and found, once 

again, the same formation. 

 

As well as being able to graphically represent forms in nature, fractals have various 

practical applications.  The film, Star Trek II: The Wrath of Khan by Lucasfilm uses 
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several fractal-generated landscapes.  These, apparently, were so realistic that many 

people did not even notice that computer graphics had been used.  Later, Digital 

Productions used fractal landscapes in the film, The Last Starfighter. 

 

Fractals have also been used to describe many natural phenomena including the 

structure of Saturn’s rings. 

 

5.3 Meteorology 

 

During the 1950s, meteorologists had great hopes for weather forecasting under the 

banner of Newtonianism.  Based upon the Laplacian idea that, with knowledge of the 

present, the future can be predicted, meteorologists were working with the view that 

through the use of new, powerful computers, weather prediction would become a 

simple matter of course.  It was understood that a completely accurate knowledge of 

the weather is practically impossible, but small inaccuracies were viewed as being 

unimportant.   

 

“ The basic idea of Western science is that you don’ t have to take into 

account the falling of a leaf on some planet in another galaxy when you’ re 

trying to account for the motion of a billiard ball on a pool table on earth.  

Very small influences can be neglected.  There’s a convergence in the way 

things work, and arbitrarily small influences don’ t blow up to have 

arbitrarily large effects.”  29 
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In other words, approximately accurate data gives an approximately accurate result.  

In the quoted example above, the effect of a falling leaf has such a small influence 

that the result on the billiard ball will be equally small – negligible.  

 

Meteorologist Edward Lorenz (see section 4.4) found otherwise when examining the 

results of a weather simulating computer.  The machine printed out a number that 

enabled Lorenz to interpret the weather his computer was producing.  During the 

winter of 1961, Lorenz, wanting to examine a pattern again, re-entered the data from a 

previous print-out.  As time progressed, the results came as a shock, not only to 

Lorenz, but also to science in general.  The new print-out did not show an exact copy 

of the original.  It started off in almost identical fashion but became more and more 

unrecognisable as time progressed. 

 

It was not until Lorenz had examined his machine extensively for faults that he 

realised what was causing the discrepancy: whereas the computer calculated data to 

six decimal places, the print-out was only accurate to three.  The inaccuracy of the 

starting value was only 1/1000, but through many calculations this small inaccuracy 

was being amplified over and over through a positive feedback loop. 

 

The unpredictability Lorenz experienced with weather forecasting may be, at first, 

difficult to understand.  After all, other similar predictions can be made for things 

such as tides and the orbits of planets.  These predictions are so accurate that we often 

forget that they are predictions.  What Lorenz points out is that these, in fact, are not 

so accurate as might be expected, although it is less obvious.  It is barely noticeable if 

a comet that has been expected for nearly a hundred years arrives half an hour late.  
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Furthermore, long-term predictions can often be easier than those in the short-term.  It 

is not hard to predict, for example, that next winter will be colder than this summer. 

To use one of Lorenz’  examples, 

 

“ We might have trouble forecasting the temperature of [a cup of]  coffee 

one minute in advance, but we should have little difficulty in forecasting it 

an hour ahead.”  30 

 

Many scientists of the day had trouble with Lorenz’  ideas at first.  Seeing as just the 

flap of a butterfly’s wings can change the weather, they saw the possibility for 

weather control.  It would be easy, they thought, to manipulate the weather into a 

desirable position from which it would be easy to predict.  It would, however, be like 

shuffling an already well-shuffled deck of cards.  It is impossible to know what the 

result of either will be. 

 

5.4 Fluid Dynamics 

 

The Lorenz approach to chaos was through the field of fluid dynamics.  This has been 

one of the most controversial areas to which chaos has been applied.  Many fluid 

dynamicists rejected Lorenz’  theories, because, like pendulums, they were thought to 

be well understood.  In practical terms, fluid dynamics was well documented and was 

no longer considered part of physics by some, but a part of engineering.  However, the 

change from smooth flow to turbulent flow was not understood.  For many, fluid 

dynamics seemed unexplainable. 
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5.4.1 Leonardo Da Vinci 

 

The great Renaissance artist, 

Leonardo Da Vinci, was one of the 

first researchers in the field of fluid 

dynamics and turbulence.  He used 

his artistic abilities to document 

fluids in turbulent motion, the results 

of which are shown opposite. 

 

In his work, he uncovered a process 

similar to the bifurcations discussed 

in section 5.1.1. Eddies fragment into smaller and smaller eddies, resulting in 

turbulence.  This is known as the ‘period doubling route to chaos.’   Although 

turbulence looks very similar to other forms of bifurcatory behaviour, it is unclear as 

to whether the ‘windows’  of order previously described can be seen. 

 

Despite the avid interest of Leonardo and others, such as Lord Kelvin, turbulence 

remained a backwater field of study until recently, when chaos shed new light on the 

subject. 

 

5.4.2 Turbulence 

 

Turbulence is something that science has always had difficulty explaining, since it is 

very difficult to model.  Water travelling down a pipe has no outside influences that 
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could possibly induce turbulent motion, and yet, if the volume of water is high 

enough, turbulence appears, seemingly from nowhere. 

 

One of the simplest ways to look at fluids that develop turbulent motion is a Taylor-

Couette system, first studied at Cambridge by Geoffry Ingram Taylor during the 

1920s.  This, basically, consists of two cylinders, one inside the other.  The outer 

cylinder remains stationary while the inner cylinder turns to create movement of the 

fluid in between. 

 

The equations that explain fluid motion are called Navier-Stokes equations after 

Claude Navier (1785-1836) and George Stokes (1819-1903) who developed them 

independently.  Being based on Newton’s laws of motion, they are deterministic.  As 

we have seen, this does not necessarily mean that it is a simply matter to make 

predictions.  The Navier-Stokes equations are non-linear, meaning that there is a large 

potential for chaotic behaviour in the system.  This has been demonstrated in section 

5.1.2 using the simple mathematical population model xnext = x *  λ *  (1 – x). 

 

When the water flow is slow, the Taylor-Couette System has few surprises.  The flow 

is mainly in concentric circles around the axis of the cylinders.  However, most of the 

fluid movement in nature is chaotic and as “…laminar flow is not usually found in 

nature, …it does not have much practical value.”  31 

 

 As the speed of the inner cylinder increases, a secondary motion suddenly appears, 

superimposed upon the first.  This motion has been described as “stacked Swiss rolls”  

that run horizontally to the vertical Taylor-Couette system.  Increasing the speed yet 
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further adds another, separate motion.  The faster the system is run, the smaller the 

increase in speed needed to induce a new motion.  Because of this, it would not be 

long before all possible motions were in action and, according to a Lev Landau 

theorem put forward in 1944, this was turbulence. 

 

Since then, however, this idea has been challenged. Several scientists have been 

working with theories more in line with the mathematical model mentioned above.  

One researcher, Gerd Pfister of the University of Kiel, uncovered a period-doubling in 

fluid motion using a miniature (and therefore simpler) version of the Taylor-Couette 

system.  According to Tom Mullin of the Clarendon Laboratory at Oxford, visual 

representations of this procedure are qualitatively the same as that of the simple 

differential equations described in section 5.1.1.  The parallels between this system 

and Robert May’s bifurcations are immediately obvious.  Analogies can be extended 

further, Mullin says, to situations such as chemical oscillators and lasers.  This is 

another of the major features of chaos.  There is a universality that crosses the borders 

of conventional disciplines. 

  

Although turbulence is far from being understood, “ mathematical ideas of chaos may 

have found a chink in the armour” 32 of a mystery that lead British physicist, Horace 

Lamb, to say: 

 

“ I am an old man now, and when I die and go to Heaven there are two 

matters on which I hope for enlightenment.  One is quantum 

electrodynamics, and the other is the turbulent motion of fluids.  And about 

the former I am really rather optimistic.”  33 
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6 Computer  Models of Chaos 

 

Much of chaos theory would not be possible without the number crunching power of 

the computer.  In order to view May’s bifurcation diagram to the standard shown in 

this report requires 5,000 calculations for each point, and to create the animated Julia 

set image required 5,050,000 calculations.  While computers can achieve this in a 

matter of minutes with unerring accuracy, consider the amount of time and 

concentration it would take for a human to achieve the same result.  Even if someone 

went to the trouble of doing the calculations, there is a large possibility that some 

inaccuracy would occur and hence, the entire exercise would be worthless. 

 

Computers, therefore, have played and continue to play a large part in the 

development of chaos theory, from its discovery by Lorenz and Mandelbrot, to more 

recent work in modelling insulin secreting cell cooperation and stomach tissue voltage 

patterns. 

 

The following programmes provide a few basic demonstrations of chaotic behaviour 

and fractal imagery. 

 

6.1 Mathematics and Populations 

To be updated tomorrow – see appendix for code. 

6.2 Julia Sets 

Julia Sets.  Plots a single Julia set.  Allows user to enter value for both real and 

imagery parts of complex number, and iterations.  See appendix. 
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3-dimensional sequential Julia Sets.  Plots Julia Sets on a 3-axis complex number 

plane.  Allows user to define increments, value to increment (x or y), no of iterations, 

contour lines, and initial and ending values.  See appendix for code. 
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7 Conclusions 

 

“ No doubt… we live on a planet dominated by chaotic principles.” 34 

 

“ Chaos has become not just theory but also method, not just a canon of 

beliefs [mythology?]  but also a way of doing science.” 35 

 

Common to many mythologies throughout the world is the understanding of chaos 

as a state from which the ordered world developed.  Often it takes the metaphor of 

water, and many cosmogonies that do not actually name chaos as such, 

acknowledge the concept through the image of water. 

 

The mythologies of Mesopotamia, Egypt, and China, see chaos as an entity to be 

controlled or suppressed, and in the case of the latter two, it was seen as a force 

that had the potential to revert order back to chaos.  They perceived a constant 

struggle between chaos and order, that is, the ability for one to become the other. 

 

Lighting, one of nature’s best exponents of fractal structure, plays a part in the 

emergence of order in Chinese and Indian mythology.  

 

The Greeks represented a transition from old mythologies to modern scientific 

method.  In this process, the ideas of chaos were lost through the process of 

reductionism, culminating in Newton’s all-encompassing theories during the 

seventeenth century.  Although there were still indications that chaos may exist within 
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Newtonian determinism, the technology of the day was insufficient to bring any 

conclusive evidence. 

 

With the introduction of the computer midway through this century, science had the 

means to expose chaos, and discover the patterns within it.  Since then, chaos has 

developed into one of science’s best models of the natural world.  Fractals have 

provided the geometric base for chaos theory, with primitive Julia Sets supplying a 

base for stunning fractal images that are able to mimic plant life and landscapes with 

incredible realism. 

 

Chaos in mythology and cosmogony possess universality through the constant themes 

of primordial timelessness and infinity.  Universality is also one of the strongest 

features of chaos theory, where themes cross the borders of scientific disciplines.  The 

concept of infinity is omnipresent in both myth and modern theory, fantastic ending 

sentence. 
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Appendices 

 

Appendix 1: Feedback Loops 

 

Feedback loops, both positive and negative, are common in our everyday lives.  A 

negative feedback involves one variable affecting a second variable, which in turn 

affects the first.  A common example of this is an oven thermostat.  When the oven 

reaches a preset temperature, the thermostat turns the oven off, causing the oven to 

cool.  When the oven cools beyond a certain point, the thermostat turns the oven on 

again and the temperature rises.  In this system, the thermostat and temperature 

influence each other to maintain a stable temperature.  An example of a positive 

feedback loop is the feedback noise made when a microphone is placed too close to a 

speaker.  The sound of the speaker is picked up by the microphone, amplified, and re-

emitted out through the speaker, where it is, once again, fed back into the microphone. 

 

“ The chaotic sound is the result of an amplifying process in which the 

output of one stage becomes the input of another.”  36 

 

The ideas of positive feedback and sensitivity on initial conditions are not unique to 

modern science.  The writer J.B. Priestly examined the idea in a play called 

“Dangerous Corner” , which has two entirely different outcomes, both wholly 

dependant on whether a simply question regarding a cigarette box is asked.   The 

notion also has a place in folklore: 
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For want of a nail, the shoe was lost; 

For want of a shoe, the horse was lost; 

For want of a horse, the rider was lost; 

For want of a rider, the battle was lost; 

For want of a battle, the kingdom was lost! 

And all for the sake of a horse shoe nail. 

 

 

Appendix 2: I terations. 

 

Iterations refer to the number of times an equation run.  An iterative equation is one 

were the answer is re-entered into the equation to gain the next result.  If an equation 

is run ten times then it has been through ten iterations. 

Example: xnext = x + 3, x0 = 0 

Iterations Result 

1 xnext = 0 + 3 therefore x = 3 

2 xnext = 3 + 3 therefore x = 6 

3 xnext = 6 + 3 therefore x = 9 

 

Appendix 3: L inear ity 

 

A linear equation is one that, when graphed, form a straight line, for example, x = 2y.  

The graph of this is as follows: 
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Non-linearity describes an equation that forms a graph that is not a straight line.  An 

example of this type of equation is as follows: x2 = y 
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Linear equations are much easier to work with than non-linear.  With a linear 

equation, a formula can be found to quickly solve the equation for the nth iteration.  In 

other words, they are predictable and consequently, the equation doesn’ t have to be 

run to find a certain result.  Example: xnext  = x + 3.  To compute this equation to the 

nth iteration, the formula would be as follows: x = n *  3. 

The majority of non-linear equations are non-predictable.  
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